

Welcome to Hazma’s documentation!

Contents:

	Installation

	Usage
	Basic Usage

	Advanced Usage

	Models
	Overview

	Gamma ray limits
	Overview

	Limits from existing data

	Discovery reach for upcoming detectors

	Classes, functions and constants

	CMB constraints
	Overview

	Computing CMB limits

	Functions and constants

	Particle physics quantities
	Overview

	Methods

	Gamma ray spectra
	Overview

	Functions

	Positron spectra
	Overview

	Functions

	Decay spectra
	Overview

	Functions

	RAMBO
	Overview

	Functions

Indices and tables

	Index

	Search Page

Installation

hazma was developed for python3. Before installing hazma, the user
needs to install several well-established python packages: cython,
scipy, numpy, and scikit-image. Theses are easily installed by using
PyPI. If the user has PyPI installed on their system, then these packages
can be installed using:

pip install cython, scipy, numpy, scikit-image, matplotlib

hazma can be installed in the same way, using:

pip install hazma

This will download a tarball from the PyPI repository, compile all the
c-code and install hazma on the system. Alternatively, the user can
install hazma by downloading the package from Hazma repo [https://github.com/LoganAMorrison/Hazma.git]. Once
downloaded, navigate to the package directory using the command line and
run either:

pip install .

or:

python setup.py install

Note that since hazma makes extensive usage of the package
cython, the user will need to have a c and c++ compiler installed on
their system (for example gcc and g++ on unix-like systems or
Microsoft Visual Studios 2015 or later on Windows). For more information,
see the Cython [https://cython.readthedocs.io/en/latest/src/quickstart/install.html] installation guide.

Usage

The user has several options for tapping into the resources provided by
hazma. The easiest is to use one of the built-in simplified models,
where a user only needs to specify the parameters of the model. If the
user is working with a model which specializes on one of the simplified
models, they can define their own class and inherit from one of the
simplified models, obtaining all of the functionality of the built in
models (such as final state radiation (FSR) spectra, cross sections,
mediator decay widths, etc.) while supplying the user with a simpler,
more specialized interface to the underlying models. For a detailed
explanations of how these two options are done, see the basic usage
section below. Another option is for the user to define their own model.
To do this, they need to define a class which contains functions for the
gamma-ray and positron spectra, as well as the annihilation cross sections
and branching fractions. In the advanced usage section, we provide a
detailed example for this case.

Basic Usage

Using Simplified Models

Here we give a compact overview of how to use the built in simplified models
in hazma. All the models built into hazma have identical interfaces.
The only difference in the interfaces is the parameters which need to be
specified for the particular model being used. Thus, we will only show the
usage of one of the models. The others can be used in an identical fashion.
The example we will use is the KineticMixing model.
To create a KineticMixing model, we use:

Import the model
>>> from hazma.vector_mediator import KineticMixing
Specify the parameters
>>> params = {'mx': 250.0, 'mv': 1e6, 'gvxx': 1.0, 'eps': 1e-3}
Create KineticMixing object
>>> km = KineticMixing(**params)

Here we have created a model with a dark matter fermion of mass
250 MeV, a vector mediator which mixes with the standard model with a
mass of 1 TeV. We set the coupling of the vector mediator to the dark
matter, \(g_{V\chi} = 1\) and set the kinetic mixing parameter
\(\epsilon = 10^{-3}\). To list all of the available final states for
which the dark matter can annihilate into, we use:

>>> km.list_annihilation_final_states()
['mu mu', 'e e', 'pi pi', 'pi0 g', 'pi0 v', 'v v']

This tells us that we can potentially annihilate through:
\(\bar{\chi}\chi\to\mu^{+}\mu^{-},e^{+}e^{-},
\pi^{+}\pi^{-},\pi^{0}\gamma,\pi^0{0}V\) or \(V V\) (the two-mediator
final state). However, which of these final states is actually available
depends on the center of mass energy. We can see this fact by looking at
the annihilation cross sections or branching fractions, which can be
computed using:

>>> cme = 2.0 * km.mx * (1.0 + 0.5 * 1e-6)
>>> km.annihilation_cross_sections(cme)
{'mu mu': 8.94839775021393e-25,
 'e e': 9.064036692829845e-25,
 'pi pi': 1.2940469635262499e-25,
 'pi0 g': 5.206158864833925e-29,
 'pi0 v': 0.0,
 'v v': 0.0,
 'total': 1.9307002022456507e-24}
>>> km.annihilation_branching_fractions(cme)
{'mu mu': 0.46347940191883763,
 'e e': 0.4694688839980031,
 'pi pi': 0.06702474894968717,
 'pi0 g': 2.6965133472190545e-05,
 'pi0 v': 0.0,
 'v v': 0.0}

Here we have chosen a realistic center of mass energy for dark matter in
our galaxy, which as a velocity dispersion of \(\sigma_v \sim 10^{-3}\).
We can that the \(V V\) final state is unavailable, as it
should be since the vector mediator mass is too heavy. In this theory, the
vector mediator can decay. If we would like to know the decay width and the
partial widths, we can use:

>>> km.partial_widths()
{'pi pi': 0.0018242846671063036,
 'pi0 g': 2.1037425397685694,
 'x x': 79577.47154594581,
 'e e': 0.007297139521307648,
 'mu mu': 0.007297139521307642,
 'total': 79579.5917070493}

If we would like to know the gamma-ray spectrum from dark matter
annihilations, we can use:

>>> photon_energies = np.array([cme/4])
>>> km.spectra(photon_energies, cme)
{'mu mu': array([2.94759389e-05]),
 'e e': array([0.00013171]),
 'pi pi': array([2.20142244e-06]),
 'pi0 g': array([2.29931655e-07]),
 'pi0 v': array([0.]),
 'v v': array([0.]),
 'total': array([0.00016362])}

Note that we only used a single photon energy because of display purposes,
but in general the user can specify any number of photon energies. If the
user would like access to the underlying spectrum functions so they can call
them repeatedly, they can use:

>>> spec_funs = km.spectrum_functions()
>>> spec_funs['mu mu'](photon_energies, cme)
[6.35970849e-05]
>>> mumu_bf = km.annihilation_branching_fractions(cme)['mu mu']
>>> mumu_bf * spec_funs['mu mu'](photon_energies, cme)
[2.94759389e-05]

Notice that the direct call to the spectrum function for
\(\bar{\chi}\chi\to\mu^{+}\mu^{-}\) doesn’t given the same result as
km.spectra(photon_energies, cme)['mu mu']. This is because the
branching fractions are not applied for the
spec_funs = km.spectrum_funcs(). If the user doesn’t care about
the underlying components of the gamma-ray spectra, the can simply call:

>>> km.total_spectrum(photon_energies, cme)
array([0.00016362])

to get the total gamma-ray spectrum. The reader may have caught the fact
that there is a gamma-ray line in the spectrum for
\(\bar{\chi}\chi\to\pi^{0}\gamma\). To get the location of this
monochromatic gamma-ray line, the user can run:

>>> km.gamma_ray_lines(cme)
{'pi0 g': {'energy': 231.78145156177675, 'bf': 2.6965133472190545e-05}}

This tells us the process which produces the line, the location of the
line and the branching fraction for the process. We don’t include the
line in the total spectrum since the line produces a Dirac-delta function.
In order to get a realistic spectrum including the line, we need to
convolve the gamma-ray spectrum with an energy resolution. This can be
achieved using:

>>> min_photon_energy = 1e-3
>>> max_photon_energy = cme
>>> energy_resolution = lambda photon_energy : 1.0
>>> number_points = 1000
>>> spec = km.total_conv_spectrum_fn(min_photon_energy, max_photon_energy,
... cme, energy_resolution, number_points)
>>> spec(cme / 4) # compute the spectrum at a photon energy of `cme/4`
array(0.001718)

The km.total_conv_spectrum_fn computes and returns an
interpolating function of the convolved function. An important thing to
note here is that the km.total_conv_spectrum_fn takes in a function
for the energy resolution. This allows the user to define the energy
resolution to depend on the specific photon energy. Such a dependence is
common for gamma-ray telescopes. Next we present the positron spectra.
These have an identical interface to the gamma-ray spectra, so we only
show how to call the functions and we suppress the output

>>> from hazma.parameters import electron_mass as me
>>> positron_energies = np.logspace(np.log10(me), np.log10(cme), num=100)
>>> km.positron_spectra(positron_energies, cme)
>>> km.positron_lines(cme)
>>> km.total_positron_spectrum(positron_energies, cme)
>>> dnde_pos = km.total_conv_positron_spectrum_fn(min(positron_energies),
... max(positron_energies),
... cme,
... energy_resolution,
... number_points)

The last thing that we would like to demonstrate is how to compute
limits. In order to compute the limits on the annihilation cross section
of a model from a gamma-ray telescope, say EGRET, we can use:

>>> from hazma.gamma_ray_parameters import egret_diffuse
Choose DM masses from half the electron mass to 250 MeV
>>> mxs = np.linspace(me/2., 250., num=10)
Compute limits from e-ASTROGAM
>>> limits = np.zeros(len(mxs), dtype=float)
>>> for i, mx in enumerate(mxs):
... km.mx = mx
... limits[i] = km.binned_limit(egret_diffuse)

Similarly, if we would like to set constraints using e-ASTROGAM, one can
use:

Import target and background model for the e-ASTROGAM telescope
>>> from hazma.gamma_ray_parameters import gc_target, gc_bg_model
Choose DM masses from half the electron mass to 250 MeV
>>> mxs = np.linspace(me/2., 250., num=10)
Compute limits from e-ASTROGAM
>>> limits = np.zeros(len(mxs), dtype=float)
>>> for i, mx in enumerate(mxs):
... km.mx = mx
... limits[i] = km.unbinned_limit(target_params=gc_target,
... bg_model=gc_bg_model)

Subclassing the Simplified Models

The user might not be
interested in the generic simplified models built into hazma,
but instead a more specialized model. In this case, it makes sense for
the user to subclass one of the simplified models (i.e. create a class
which inherits from one of the simplified models.) As and example, we
illustrate how to do this with the Higgs-portal model (of course this
model is already built into hazma, but it works nicely as an
example.) Recall that the full set of parameters for the scalar mediator
model are:

	\(m_{\chi}\): dark matter mass,

	\(m_{S}\): scalar mediator mass,

	\(g_{S\chi}\): coupling of scalar mediator to dark matter,

	\(g_{Sf}\): coupling of scalar mediator to standard model fermions,

	\(g_{SG}\): effective coupling of scalar mediator to gluons,

	\(g_{SF}\): effective coupling of scalar mediator to photons and

	\(\Lambda\): cut-off scale for the effective interactions.

In the case of the Higgs-portal model, the scalar mediator talks to the
standard model only through the Higgs boson, i.e. it mixes with the Higgs.
Therefore, the scalar mediator inherits its interactions with the standard
model fermions, gluons and photon through the Higgs. In the Higgs-portal
model, the relevant parameters are:

	\(m_{\chi}\): dark matter mass,

	\(m_{S}\): scalar mediator mass,

	\(g_{S\chi}\): coupling of scalar mediator to dark matter,

	\(\sin\theta\): the mixing angle between the scalar mediator and
the Higgs,

The remaining parameters can be deduced from these using:

\[g_{Sf} = \sin\theta, g_{SG} = 3\sin\theta, g_{SF} = -\frac{5}{6}\sin\theta, \Lambda = v_{h}.\]

Below, we construct a class which subclasses the scalar mediator class
to implement the Higgs-portal model.

from hazma.scalar_mediator import ScalarMediator
from hazma.parameters import vh

class HiggsPortal(ScalarMediator):
 def __init__(self, mx, ms, gsxx, stheta):
 self._lam = vh
 self._stheta = stheta
 super(HiggsPortal, self).__init__(mx, ms, gsxx, stheta, 3.*stheta,
 -5.*stheta/6., vh)

 @property
 def stheta(self):
 return self._stheta

 @stheta.setter
 def stheta(self, stheta):
 self._stheta = stheta
 self.gsff = stheta
 self.gsGG = 3. * stheta
 self.gsFF = - 5. * stheta / 6.

 # Hide underlying properties' setters
 @ScalarMediator.gsff.setter
 def gsff(self, gsff):
 raise AttributeError("Cannot set gsff")

 @ScalarMediator.gsGG.setter
 def gsGG(self, gsGG):
 raise AttributeError("Cannot set gsGG")

 @ScalarMediator.gsFF.setter
 def gsFF(self, gsFF):
 raise AttributeError("Cannot set gsFF")

There are a couple things to note about our above implementation. First,
our model only takes in \(m_{\chi}\), \(m_{S}\), \(g_{S\chi}\)
and \(\sin\theta\), as desired. But the underlying model, i.e. the
ScalarMediator model only knows about \(m_{\chi}\), \(m_{S}\),
\(g_{S\chi}\), \(g_{Sf}\), \(g_{SG}\), \(g_{SF}\) and
\(\Lambda\). So if we update \(\sin\theta\), we additionally need
to update the underlying parameters, \(g_{Sf}\), \(g_{SG}\),
\(g_{SF}\) and \(\Lambda\). The easiest way to do this is using
getters and setters by defining \(\sin\theta\) to be a property
through the @property decorator. Then every time we update
\(\sin\theta\), we can also update the underlying parameters. The
second thing to note is that we want to make sure we don’t accidentally
change the underlying parameters directly, since in this model, they are
only defined through \(\sin\theta\). We an ensure that we cannot
change the underlying parameters directly by overriding the getters and
setters for gsff, gsGG and gsGG and raising an error if we
try to change them. This isn’t strictly necessary (as long as the user is
careful), but can help avoid confusing behavior.

Advanced Usage

Adding New Gamma-Ray Experiments

Currently hazma only includes information for producing projected
unbinned limits with e-ASTROGAM, using the dwarf Draco or inner
\(10^\circ\times10^\circ\) region of the Milky Way as a target.
Adding new detectors and target regions is straightforward. A detector is
characterized by the effective area \(A_{\mathrm{eff}}(E)\), the
energy resolution \(\epsilon(E)\) and observation time
\(T_{\mathrm{obs}}\). In hazma, the first two can be any callables
(functions) and the third must be a float. The region of interest is
defined by a TargetParams object, which can be instantiated
with:

>>> from hazma.gamma_ray_parameters import TargetParams
>>> tp = TargetParams(J=1e29, dOmega=0.1)

The background model should be packaged in an object of type
BackgroundModel. This light-weight class has a function
dPhi_dEdOmega() for computing the differential photon flux per solid
angle (in \(\mathrm{MeV}^{-1}\mathrm{sr}\)) and an attribute
e_range specifying the energy range over which the model is valid
(in MeV). New background models are defined by passing these two the

>>> from hazma.background_model import BackgroundModel
>>> bg = BackgroundModel(e_range=[0.5, 1e4],
... dPhi_dEdOmega=lambda e: 2.7e-3 / e**2)

Gamma-ray observation information from Fermi-LAT, EGRET and COMPTEL is
included with hazma, and other observations can be added using the
container class FluxMeasurement. The initializer requires:

	The name of a CSV file containing gamma-ray observations. The file’s
columns must contain:

	Lower bin edge (MeV)

	Upper bin edge (MeV)

	\(E^n d^2\Phi / dE\, d\Omega\) (in \(\mathrm{MeV}^{n-1}
\mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1}\))

	Upper error bar (in \(\mathrm{MeV}^{n-1} \mathrm{cm}^{-2}
\mathrm{s}^{-1} \mathrm{sr}^{-1}\))

	Lower error bar (in \(\mathrm{MeV}^{n-1} \mathrm{cm}^{-2}
\mathrm{s}^{-1} \mathrm{sr}^{-1}\))

Note that the error bar values are their \(y\)-coordinates, not
their relative distances from the central flux.

	The detector’s energy resolution function.

	A TargetParams object for the target region.

For example, a CSV file obs.csv containing observations

	lower bin

	upper bin

	\(E^n d^2\Phi / dE\, d\Omega\)

	upper error

	lower error

	
	

	275.0

	0.0040

	0.0043

	0.0038

	
	

	900.0

	0.0035

	0.0043

	0.003

with \(n=2\) for an instrument with energy resolution
\(\epsilon(E) = 0.05\) observing the target region tp defined
above can be loaded using 1:

>>> from hazma.flux_measurement import FluxMeasurement
>>> obs = FluxMeasurement("obs.dat", lambda e: 0.05, tp)

The attributes of the FluxMeasurement store all of the provide
information, with the \(E^n\) prefactor removed from the flux and
error bars, and the errors converted from the positions of the error bars
to their sizes. These are used internally by the Theory.binned_limit()
method, and can be accessed as follows:

>>> obs.e_lows, obs.e_highs
(array([150., 650.]), array([275., 900.]))
>>> obs.target
<hazma.gamma_ray_parameters.TargetParams at 0x1c1bbbafd0>
>>> obs.fluxes
array([8.85813149e-08, 5.82726327e-09])
>>> obs.upper_errors
array([6.64359862e-09, 1.33194589e-09])
>>> obs.lower_errors
array([4.42906574e-09, 8.32466181e-10])
>>> obs.energy_res(10.)
0.05

User-Defined Models

In this subsection, we demonstrate how to implement new models in Hazma. A notebook containing all th.. code in this appendix can be downloaded from GitHub HazmaExample [https://github.com/LoganAMorrison/Hazma/blob/master/notebooks/hazma_paper/hazma_example.ipynb]. The model we will consider is an effective field theory with a Dirac fermion DM particle which talks to neutral and charged pions through gauge-invariant dimension-5 operators. The Lagrangian for this model is:

\[\mathcal{L} \supset \frac{c_1}{\Lambda}\overline{\chi}\chi\pi^{+}\pi^{-}+\frac{c_2}{\Lambda}\overline{\chi}\chi\pi^{0}\pi^{0}\]

where \(c_{1}, c_{2}\) are dimensionless Wilson coefficients and \(\Lambda\) is the cut-off scale of the theory. In order to implement this model in Hazma, we need to compute the annihilation cross sections and the FSR spectra. The annihilation channels for this model are simply \(\bar{\chi}\chi\to\pi^{0}\pi^{0}\) and \(\bar{\chi}\chi\to\pi^{+}\pi^{-}\). The computations for the cross sections are straight forward and yield:

\[\begin{split}\sigma(\bar{\chi}\chi\to\pi^{+}\pi^{-}) = \frac{c_1^2 \sqrt{1-4 \mu _{\pi }^2} \sqrt{1-4 \mu _{\chi }^2}}{32 \pi \Lambda^2}\\
\sigma(\bar{\chi}\chi\to\pi^{0}\pi^{0}) = \frac{c_2^2 \sqrt{1-4 \mu_{\pi^{0}}^2} \sqrt{1-4 \mu_{\chi}^2}}{8 \pi \Lambda^2}\end{split}\]

where \(Q\) is the center of mass energy, \(\mu_{\chi} = m_{\chi}/Q\), \(\mu_{\pi} = m_{\pi^{\pm}}/Q\) and \(\mu_{\pi^{0}} = m_{\pi^{0}}/Q\). In addition to the cross sections, we need the FSR spectrum for \(\overline{\chi}\chi\to\pi^{+}\pi^{-}\gamma\). This is:

\[\frac{dN(\bar{\chi}\chi\to\pi^{+}\pi^{-}\gamma)}{dE_{\gamma}} = \frac{\alpha \left(2 f(x)-2\left(1-x-2 \mu_{\pi} ^2\right)
\log \left(\frac{1-x-f(x)}{1-x+f(x)}\right)\right)}{\pi\sqrt{1-4 \mu_{\pi} ^2} x}\]

where

\[f(x) = \sqrt{1-x} \sqrt{1-x-4 \mu_{\pi} ^2}\]

We are now ready to set up the Hazma model. For hazma to work properly, we will need to define the following functions in our model:

	annihilation_cross_section_funcs(): A function returning a dict of the annihilation cross sections functions, each of which take a center of mass energy.

	spectrum_funcs(): A function returning a dict of functions which take photon energies and a center of mass energy and return the gamma-ray spectrum contribution from each final state.

	gamma_ray_lines(e_cm): A function returning a dict of the gamma-ray lines for a given center of mass energy.

	positron_spectrum_funcs(): Like spectrum_funcs(), but for positron spectra.

	positron_lines(e_cm): A function returning a dict of the electron/positron lines for a center of mass energy.

We find it easiest to place all of these components is modular classes and then combine all the individual classes into a master class representing our model. Before we begin writing the classes, we will need a few helper functions and constants from hazma:

import numpy as np # NumPy is heavily used
import matplotlib.pyplot as plt # Plotting utilities
neutral and charged pion masses
from hazma.parameters import neutral_pion_mass as mpi0
from hazma.parameters import charged_pion_mass as mpi
from hazma.parameters import qe # Electric charge
Positron spectra for neutral and charged pions
from hazma.positron_spectra import charged_pion as pspec_charged_pion
Deay spectra for neutral and charged pions
from hazma.decay import neutral_pion, charged_pion
The `Theory` class which we will ultimately inherit from
from hazma.theory import Theory

Now, we implement a cross section class:

class HazmaExampleCrossSection:
 def sigma_xx_to_pipi(self, Q):
 mupi = mpi / Q
 mux = self.mx / Q

 if Q > 2 * self.mx and Q > 2 * mpi:
 sigma = (self.c1**2 * np.sqrt(1 - 4 * mupi**2) *
 np.sqrt(1 - 4 * mux**2)**2 /
 (32.0 * self.lam**2 * np.pi))
 else:
 sigma = 0.0

 return sigma

 def sigma_xx_to_pi0pi0(self, Q):
 mupi0 = mpi0 / Q
 mux = self.mx / Q

 if Q > 2 * self.mx and Q > 2 * mpi0:
 sigma = (self.c2**2 * np.sqrt(1 - 4 * mux**2) *
 np.sqrt(1 - 4 * mupi0**2) /
 (8.0 * self.lam**2 * np.pi))
 else:
 sigma = 0.0

 return sigma

 def annihilation_cross_section_funcs(self):
 return {'pi0 pi0': self.sigma_xx_to_pi0pi0,
 'pi pi': self.sigma_xx_to_pipi}

The key function is annihilation_cross_sections, which is required to be implemented by hazma. Next, we implement the spectrum functions which will produce the FSR and decay spectra:

class HazmaExampleSpectra:
 def dnde_pi0pi0(self, e_gams, e_cm):
 return 2.0 * neutral_pion(e_gams, e_cm / 2.0)

 def __dnde_xx_to_pipig(self, e_gam, Q):
 # Unvectorized function for computing FSR spectrum
 mupi = mpi / Q
 mux = self.mx / Q
 x = 2.0 * e_gam / Q
 if 0.0 < x and x < 1. - 4. * mupi**2:
 dnde = ((qe**2 * (2 * np.sqrt(1 - x) * np.sqrt(1 - 4*mupi**2 - x) +
 (-1 + 2 * mupi**2 + x) *
 np.log((-1 + np.sqrt(1 - x) * np.sqrt(1 - 4*mupi**2 - x) + x)**2/
 (1 + np.sqrt(1 - x)*np.sqrt(1 - 4*mupi**2 - x) - x)**2)))/
 (Q * 2.0 * np.sqrt(1 - 4 * mupi**2) * np.pi**2 * x))
 else:
 dnde = 0

 return dnde

 def dnde_pipi(self, e_gams, e_cm):
 return (np.vectorize(self.__dnde_xx_to_pipig)(e_gams, e_cm) +
 2. * charged_pion(e_gams, e_cm / 2.0))

 def spectrum_funcs(self):
 return {'pi0 pi0': self.dnde_pi0pi0,
 'pi pi': self.dnde_pipi}

 def gamma_ray_lines(self, e_cm):
 return {}

Note the the second __dnde_xx_to_pipig is an unvectorized helper function, which is not to be used directly. Next we implement the positron spectra:

class HazmaExamplePositronSpectra:
 def dnde_pos_pipi(self, e_ps, e_cm):
 return pspec_charged_pion(e_ps, e_cm / 2.)

 def positron_spectrum_funcs(self):
 return {"pi pi": self.dnde_pos_pipi}

 def positron_lines(self, e_cm):
 return {}

Lastly, we group all of these classes into a master class and we’re done:

class HazmaExample(HazmaExampleCrossSection,
 HazmaExamplePositronSpectra,
 HazmaExampleSpectra,
 Theory):
 # Model parameters are DM mass: mx,
 # Wilson coefficients: c1, c2 and
 # cutoff scale: lam
 def __init__(self, mx, c1, c2, lam):
 self.mx = mx
 self.c1 = c1
 self.c2 = c2
 self.lam = lam

 @staticmethod
 def list_annihilation_final_states():
 return ['pi pi', 'pi0 pi0']

Now we can easily compute gamma-ray spectra, positron spectra and limit on our new model from gamma-ray telescopes. To implement our new model with \(m_{\chi} = 200~\mathrm{MeV}, c_{1} = c_{2} = 1\) and \(\Lambda = 100~\mathrm{GeV}\), we can use:

>>> model = HazmaExample(200.0, 1.0, 1.0, 100e3)

To compute a gamma-ray spectrum:

Photon energies from 1 keV to 1 GeV
>>> egams = np.logspace(-3.0, 3.0, num=150)
Assume the DM is moving with a velocity of 10^-3
>>> vdm = 1e-3
Compute CM energy assuming the above velocity
>>> Q = 2.0 * model.mx * (1 + 0.5 * vdm**2)
Compute spectra
>>> spectra = model.spectra(egams, Q)

Then we can plot the spectra using:

>>> plt.figure(dpi=100)
>>> for key, val in spectra.items():
... plt.plot(egams, val, label=key)
>>> plt.xlabel(r'$E_{\gamma} (\mathrm{MeV})$', fontsize=16)
>>> plt.ylabel(r'$\frac{dN}{dE_{\gamma}} (\mathrm{MeV}^{-1})$', fontsize=16)
>>> plt.xscale('log')
>>> plt.yscale('log')
>>> plt.legend()

Additionally, we can compute limits on the thermally-averaged annihilation cross section of our model for various DM masses using

Import target and background model for the E-Astrogam telescope
>>> from hazma.gamma_ray_parameters import gc_target, gc_bg_model
Choose DM masses from half the pion mass to 250 MeV
>>> mxs = np.linspace(mpi/2., 250., num=100)
Compute limits from E-Astrogam
>>> limits = np.zeros(len(mxs), dtype=float)
>>> for i, mx in enumerate(mxs):
... model.mx = mx
... limits[i] = model.unbinned_limit(target_params=gc_target,
... bg_model=gc_bg_model)

	1

	If the CSV containing the observations uses a different power of
\(E\) than \(n=2\), this can be specified using the
power keyword argument to the initializer for FluxMeasurement

Models

Overview

This page contains the documentation for the models built into hazma.

Contents:

	Scalar mediator
	Overview

	Classes

	Vector mediator
	Overview

	Classes

Scalar mediator

Overview

The scalar_mediator module contains three models for which dark
matter interacts with the Standard Model through a scalar mediator. For
energies \(\mu\gg 1~\mathrm{GeV}\), the interaction Lagrangian can for
this theory is given by:

\[\begin{split}\mathcal{L}_{\mathrm{Int}(S)} & = -S \left(g_{S\chi} + g_{Sf} \sum_f \frac{y_f}{\sqrt{2}} \bar{f} f \right) \\
 & \hspace{2cm} + \frac{S}{\Lambda} \left(g_{SG} \frac{\alpha_\mathrm{EM}}{4\pi} F_{\mu\nu} F^{\mu\nu} + g_{SF} \frac{\alpha_s}{4\pi} G_{\mu\nu}^a G^{a \mu\nu} \right)\end{split}\]

where the \(y_{f}\)’s are the Yukawa couplings for the Standard Model
fermions and \(F_{\mu\nu}\) and \(G^{a}_{\mu\nu}\) are the field
strength tensors for the photon and gluons (we will describe the remaining
parameters below.) For energies \(\mu<1~\mathrm{GeV}\), the quarks and
gluons confine into mesons and baryons. In order to describe the
interactions of the scalar mediator to the mesons, we use Chiral
Perturbation theory. The interaction Lagrangian becomes:

\[\begin{split}\mathcal{L}_{\mathrm{Int}(S)} & = \frac{2 g_{SG}}{9 \Lambda} S \left[(\partial_\mu \pi^0) (\partial^\mu \pi^0) + 2 (\partial_\mu \pi^+) (\partial^\mu \pi^-) \right]\\
 & \hspace{1cm} + \frac{4 i e g_{SG}}{9 \Lambda} S A^\mu \left[\pi^- (\partial_\mu \pi^+) - \pi^+ (\partial_\mu \pi^-) \right]\\
 & \hspace{1cm} - \frac{B (m_u + m_d)}{6} \left(\frac{3 g_{Sf}}{v_h} + \frac{2 g_{SG}}{3 \Lambda} \right) S \left[(\pi^0)^2 + 2 \pi^+ \pi^- \right]\\
 & \hspace{1cm} + \frac{B (m_u + m_d) g_{SG}}{81 \Lambda} \left(\frac{2 g_{SG}}{\Lambda} - \frac{9 g_{Sf}}{v_h} \right) S^2 \left[(\pi^0)^2 + 2 \pi^+ \pi^- \right]\\
 & \hspace{1cm} + \frac{4 e^2 g_{SF}}{9\Lambda} S \pi^+ \pi^- A_\mu A^\mu\\
 & \hspace{1cm} - g_{S \chi} S \bar{\chi} \chi - g_{Sf} S \sum_{\ell=e,\mu} \frac{y_\ell}{\sqrt{2}} \bar{\ell} \ell.\end{split}\]

where \(B\approx 2800~\mathrm{MeV}\), \(v_{h} = 246~\mathrm{GeV}\)
and the model parameters are:

	\(m_{\chi}\): dark matter mass,

	\(m_{S}\): scalar mediator mass,

	\(g_{S\chi}\): coupling of scalar mediator to dark matter,

	\(g_{Sf}\): coupling of scalar mediator to standard model fermions,

	\(g_{SG}\): effective coupling of scalar mediator to gluons,

	\(g_{SF}\): effective coupling of scalar mediator to photons and

	\(\Lambda\): cut-off scale for the effective interactions.

In addition to the generic scalar mediator mode, hazma also contains
specialized models for realizations of the Higgs-portal and Heavy-quark
theories. In the Higgs-portal model, we assume that the scalar mediator
doesn’t directly interact with the standard model particles aside from the
Higgs. We assume the the scalar mixes with the Higgs and inherits all its
interactions to the Standard model through the mixing. The Higgs-portal
model contains the following parameters:

	\(m_{\chi}\): dark matter mass,

	\(m_{S}\): scalar mediator mass,

	\(g_{S\chi}\): coupling of scalar mediator to dark matter,

	\(\sin\theta\): mixing angle between the scalar mediator and Higgs.

The generic couplings are obtained from these parameters through the
following relationships:

\[g_{Sf} = \sin\theta, g_{SG} = 3\sin\theta, g_{SF} = -\frac{5}{6}\sin\theta, \Lambda = v_{h}.\]

The Heavy-quark model assumes that there exists a new heavy quark and that
the scalar mediator only couples the the heavy quark. The parameters of this
model are:

	\(m_{\chi}\): dark matter mass,

	\(m_{S}\): scalar mediator mass,

	\(g_{S\chi}\): coupling of scalar mediator to dark matter,

	\(g_{SQ}\): coupling of scalar mediator to the heavy quark,

	\(Q_{Q}\): charge of the heavy quark,

	\(m_{Q}\): mass of the heavy quark.

The relationships between these parameters and the generic parameters are:

\[g_{SG} = g_{SQ}, g_{SF} = 2Q_{Q}^2g_{SQ}, \Lambda = m_{Q}.\]

For details on how to uses these classes, see Basic Usage.

Classes

Vector mediator

Overview

The vector_mediator module contains two models for which dark
matter interacts with the Standard Model through a vector mediator. For
energies \(\mu\gg 1~\mathrm{GeV}\), the interaction Lagrangian can for
this theory is given by:

\[\mathcal{L}_{\mathrm{Int}(V)}= V_\mu \left(g_{V\chi} \bar{\chi} \gamma^\mu \chi + \sum_f g_{Vf} \bar{f} \gamma^\mu f \right) - \frac{\epsilon}{2} V^{\mu\nu} F_{\mu\nu}.\]

where the \(\epsilon\) is the kinetic mixing couplings for the
Standard Model fermions and \(F_{\mu\nu}\) is the field
strength tensor for the photon (we will describe the remaining
parameters below.) For energies \(\mu<1~\mathrm{GeV}\), the quarks and
gluons confine into mesons and baryons. In order to describe the
interactions of the vector mediator to the mesons, we use Chiral
Perturbation theory. The interaction Lagrangian becomes:

\[\begin{split}\mathcal{L}_{\mathrm{Int}(V)} & = -i (g_{Vu} - g_{Vd}) V^\mu \left(\pi^+ \partial_\mu \pi^- - \pi^- \partial_\mu \pi^+ \right)\\
 & \hspace{1cm} + (g_{Vu} - g_{Vd})^2 V_\mu V^\mu \pi^+ \pi^-\\
 & \hspace{1cm} + 2 e (Q_u - Q_d) (g_{Vu} - g_{Vd}) A_\mu V^\mu \pi^+ \pi^-\\
 & \hspace{1cm} + \frac{1}{8\pi^2 f_\pi} \epsilon^{\mu\nu\rho\sigma} (\partial_\mu \pi^0)\\
 & \hspace{2cm} \times \left\{ e (2 g_{Vu} + g_{Vd}) \left[(\partial_\nu A_\rho) V_\sigma + (\partial_\nu V_\rho) A_\sigma \right] \right. \\
 & \hspace{4cm} \left. + 3 (g_{Vu}^2 - g_{Vd}^2) (\partial_\nu V_\rho) V_\sigma \right\}\\
 & \hspace{1cm} + V_{\mu}\left(g_{Ve}\bar{e}\gamma^{\mu}e + g_{V\mu}\bar{\mu}\gamma^{\mu}\mu\right)\end{split}\]

where \(f_{\pi}\approx 93~\mathrm{MeV}\) and the model parameters are:

	\(m_{\chi}\): dark matter mass,

	\(m_{V}\): vector mediator mass,

	\(g_{V\chi}\): coupling of vector mediator to dark matter,

	\(g_{Vq}\): (\(q=u,d,s\)) coupling of vector mediator to standard model quarks,

	\(g_{V\ell}\): (\(\ell=e,\mu\)) coupling of vector mediator to standard model leptons,

In addition to the generic vector mediator model, hazma also contains
specialized models for realization for a theory in which the vector mediator
mixes with the Standard model photon. In the kinetic-mixing model, we
assume that the vector mediator doesn’t directly interact with the Standard
model particles aside from the mixing with the photon. The vector then
inherits its coupling to the charged Standard model fermions from the photon.
The kinetic-mixing model contains the following parameters:

	\(m_{\chi}\): dark matter mass,

	\(m_{V}\): scalar mediator mass,

	\(g_{V\chi}\): coupling of scalar mediator to dark matter,

	\(\epsilon\): kinetic mixing parameter between the vector mediator
and SM photon.

The generic couplings are obtained from these parameters through the
following relationships:

\[g_{Vf} = \epsilon e Q_{q}\]

where \(f=(u,d,s,e,\mu)\). For details on how to uses these classes,
see Basic Usage.

Classes

Gamma ray limits

Overview

hazma includes functionality for using existing gamma-ray data to
constrain theories and for projecting the discovery reach of proposed gamma-ray
detectors. For the first case, hazma defines a container class called
FluxMeasurement for storing information about gamma-ray datasets, and
Theory contains a method for using these to set limits. The second case
is also handled by a method in Theory which takes arguments specifying
various detector and target characteristics.

Limits from existing data

	
Theory.binned_limit(measurement, n_sigma=2.0)[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/theory.py]

	Determines the limit on \(<sigma v>\) from gamma-ray data.

We define a signal to be in conflict with the measured flux for bin
\(i\) for an experiment if

\[\Phi_{\chi}^{(i)} > n_{\sigma} \sigma^{(i)} + \Phi^{(i)},\]

where \(\Phi_\chi^{(i)}\) is the integrated flux due to DM
annihilations for the bin, \(\Phi^{(i)}\) is the measured flux in
the bin, \(\sigma^{(i)}\) is size of the upper error bar for the
bin and \(n_{\sigma} = 2\) is the significance. The overall limit on
\(\langle\sigma v\rangle\) is computed by minimizing over the
limits determined for each bin.

	Parameters

	
	measurement (FluxMeasurement) – Information about the flux measurement and target.

	n_sigma (float) – See the notes for this function.

	Returns

	<sigma v>_tot – Largest allowed thermally averaged total cross section in cm^3 / s

	Return type

	float

Discovery reach for upcoming detectors

	
Theory.unbinned_limit(A_eff, energy_res, T_obs, target_params, bg_model, n_sigma=5.0, debug_msgs=False)[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/theory.py]

	Computes smallest-detectable value of <sigma v> for given target and
experiment parameters.

We define a signal to be detectable if

\[N_S / \sqrt{N_B} \geq n_{\sigma},\]

where \(N_S\) and \(N_B\) are the number of signal and
background photons in the energy window of interest and
\(n_\sigma\) is the significance in number of standard deviations.
Note that \(N_S \propto \langle \sigma v \rangle\). While the
photon count statistics are properly taken to be Poissonian and using a
confidence interval would be more rigorous, this procedure provides a
good estimate and is simple to compute. The energy window is chosen to
maximize N_S/sqrt(N_B).

	Parameters

	
	A_eff (float -> float) – Effective area of experiment in cm^2 as a function of photon
energy.

	energy_res (float -> float) – The detector’s energy resolution (\(\Delta E / E\)) as a
function of photon energy in MeV.

	T_obs (float) – Experiment’s observation time in s

	target_params (TargetParams) – Object containing information about the observation target.

	bg_model (BackgroundModel) – Object representing a gamma ray background model.

	n_sigma (float) – Number of standard deviations the signal must be above the
background to be considered detectable

	debug_msgs (bool) – If True, the energy window found by the optimizer will be printed.

	Returns

	<sigma v> – Smallest-detectable thermally averaged total cross section in units
of cm^3 / s.

	Return type

	float

Classes, functions and constants

These data, functions and classes are relevant for setting constraints and
projecting discovery reach.

	
class hazma.flux_measurement.FluxMeasurement(obs_rf, energy_res, target, power=2)[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/flux_measurement.py]

	Container for all information about a completed gamma ray analysis.

	
e_lows[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/flux_measurement.py]

	Lower edges of energy bins.

	Type

	np.array

	
e_highs[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/flux_measurement.py]

	Upper edges of energy bins.

	Type

	np.array

	
fluxes[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/flux_measurement.py]

	Flux measurements for each bin (MeV^-1 cm^-2 s^-1 sr^-1).

	Type

	np.array

	
upper_errors[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/flux_measurement.py]

	Size of upper error bars on flux measurements (MeV^-1 cm^-2 s^-1
sr^-1).

	Type

	np.array

	
lower_errors[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/flux_measurement.py]

	Size of lower error bars on flux measurements (MeV^-1 cm^-2 s^-1
sr^-1).

	Type

	np.array

	
energy_res[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/flux_measurement.py]

	Function returning energy resolution (Delta E / E) as a function of
photon energy.

	Type

	callable

	
target[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/flux_measurement.py]

	Information about the target observed for this measurement.

	Type

	TargetParams

	
__init__(obs_rf, energy_res, target, power=2)[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/flux_measurement.py]

	Constructor.

	Parameters

	
	obs_rf (str) – Name of file containing observation information. The columns of
this file must be:

	Lower bin edge (MeV)

	Upper bin edge (MeV)

	\(E^2 d^2 \Phi/dE d\Omega\) (MeV cm^-2 s^-1 sr^-1)

	Upper error bar (MeV cm^-2 s^-1 sr^-1)

	Lower error bar (MeV cm^-2 s^-1 sr^-1)

Note that the error bar values are their y-coordinates, not their
relative distances from the central flux.

	energy_res (callable) – Energy resolution function.

	target (TargetParams) – The target of the analysis

	
class hazma.background_model.BackgroundModel(e_range, dPhi_dEdOmega)[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/background_model.py]

	Represents a gamma ray background model, which is required for computing
projected limits for planned gamma-ray detectors.

	Parameters

	
	e_range ([float, float]) – Minimum and maximum photon energies for which this model is valid, in
MeV.

	dPhi_dEdOmega (np.array) – Background gamma ray flux (MeV^-1 sr^-1 m^-2 s^-1) as a function of
photon energy (MeV). This function must be vectorized.

	
dPhi_dEdOmega(es)[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/background_model.py]

	Computes this background model’s gamma ray flux.

	Parameters

	es (float or np.array) – Photon energy/energies at which to compute

	Returns

	dPhi_dEdOmega – Background gamma ray flux, in MeV^-1 sr^-1 m^-2 s^-1. For any
energies outside of self.e_range, np.nan is returned.

	Return type

	np.array

	
hazma.gamma_ray_parameters.energy_res_comptel(e)[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/gamma_ray_parameters.py]

	COMPTEL energy resolution \(\Delta E / E\).

Taken from ch. II, page 11 [http://wwwgro.unh.edu/users/ckappada/thesis_stuff/thesis.html].

	
hazma.gamma_ray_parameters.A_eff_comptel = <scipy.interpolate.interpolate.interp1d object>[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/gamma_ray_parameters.py]

	COMPTEL effective area function

	
hazma.gamma_ray_parameters.comptel_diffuse = <hazma.flux_measurement.FluxMeasurement object>[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/gamma_ray_parameters.py]

	COMPTEL diffuse gamma-ray flux measurements

	
hazma.gamma_ray_parameters.energy_res_egret(e)[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/gamma_ray_parameters.py]

	EGRET’s energy resolution \(\Delta E / E\).

This is the most optimistic value, taken from
sec. 4.3.3 [http://adsabs.harvard.edu/doi/10.1086/191793].

	
hazma.gamma_ray_parameters.A_eff_egret = <scipy.interpolate.interpolate.interp1d object>[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/gamma_ray_parameters.py]

	EGRET effective area function

	
hazma.gamma_ray_parameters.egret_diffuse = <hazma.flux_measurement.FluxMeasurement object>[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/gamma_ray_parameters.py]

	EGRET diffuse gamma-ray flux measurements

	
hazma.gamma_ray_parameters.energy_res_fermi(e)[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/gamma_ray_parameters.py]

	Fermi-LAT’s energy resolution \(\Delta E / E\).

This is the average of the most optimistic normal and 60deg off-axis values
from fig. 18 [https://arxiv.org/abs/0902.1089].

	
hazma.gamma_ray_parameters.A_eff_fermi = <scipy.interpolate.interpolate.interp1d object>[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/gamma_ray_parameters.py]

	Fermi-LAT effective area function

	
hazma.gamma_ray_parameters.fermi_diffuse = <hazma.flux_measurement.FluxMeasurement object>[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/gamma_ray_parameters.py]

	Fermi diffuse gamma-ray flux measurements

	
hazma.gamma_ray_parameters.energy_res_e_astrogam = <scipy.interpolate.interpolate.interp1d object>[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/gamma_ray_parameters.py]

	e-ASTROGAM energy resolution function. From table 1 of the e-ASTROGAM
whitebook [https://arxiv.org/abs/1711.01265].

	
hazma.gamma_ray_parameters.A_eff_e_astrogam = <scipy.interpolate.interpolate.interp1d object>[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/gamma_ray_parameters.py]

	e-ASTROGAM effective area function

	
class hazma.gamma_ray_parameters.TargetParams(J, dOmega)[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/gamma_ray_parameters.py]

	Container for information about a target region.

Currently implemented for the Draco dwarf galaxy and \(10^\circ imes
10^\circ\) region around the galactic center, which can be imported using:

from hazma.gamma_ray_parameters import draco_params, gc_target

	Parameters

	
	J (float) – J-factor in MeV^2 cm^-5

	dOmega (float) – Angular size in sr

	
hazma.gamma_ray_parameters.solid_angle(l_max, b_min, b_max)[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/gamma_ray_parameters.py]

	Returns solid angle subtended for a rectangular target region centered on
the galactic center.

	Parameters

	
	l_max (float) – Maximum value of galactic longitude in deg. Note that \(l\) must
lie in the interval \([-180, 180]\).

	b_max (b_min,) – Minimum and maximum values for \(b\) in deg. Note that \(b\)
must lie in the interval \([-90, 90]\), with the equator at
\(b = 0\).

	Returns

	Omega – Solid angle subtended by the region in sr.

	Return type

	float

CMB constraints

Overview

The Theory class contains functions for computing CMB limits and
\(f_{\mathrm{eff}}\) for dark matter models. Other useful constants and
functions are also available.

Computing CMB limits

	
Theory.cmb_limit(x_kd=0.0001, p_ann=3.5e-31)[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/theory.py]

	Computes the CMB limit on <sigma v>.

This is derived by requiring that

\[f_{\mathrm{eff}} \langle \sigma v \rangle / m_{\chi} < p_{\mathrm{ann}},\]

where \(f_{\mathrm{eff}}\) is the efficiency with which dark matter
annihilations around recombination inject energy into the plasma and
\(p_{\mathrm{ann}}\) is derived from CMB observations.

	Parameters

	
	x_kd (float) – T_kd / m_x, where T_kd is the dark matter’s kinetic decoupling
temperature. This will be computed self-consistently in future
versions of hazma.

	p_ann (float) – Constraint on energy release per DM annihilation in cm^3 s^-1
MeV^-1.

	Returns

	<sigma v> – Upper bound on <sigma v>, in cm^3 s^-1.

	Return type

	float

Functions and constants

	
Theory.f_eff(x_kd=0.0001)[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/theory.py]

	Computes \(f_{\mathrm{eff}}\) the efficiency with which dark matter
annihilations around recombination inject energy into the thermal
plasma.

	
hazma.cmb.p_ann_planck_temp_pol = 3.5e-31[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/cmb.py]

	Planck 2018 95% upper limit on p_ann from temperature + polarization
measurements, in cm^3 s^-1 MeV^-1

	
hazma.cmb.p_ann_planck_temp_pol_lensing = 3.3e-31[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/cmb.py]

	Planck 2018 95% upper limit on p_ann from temperature + polarization +
lensing measurements, in cm^3 s^-1 MeV^-1

	
hazma.cmb.p_ann_planck_temp_pol_lensing_bao = 3.2e-31[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/cmb.py]

	Planck 2018 95% upper limit on p_ann from temperature + polarization +
lensing + BAO measurements, in cm^3 s^-1 MeV^-1

	
hazma.cmb.vx_cmb(mx, x_kd)[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/cmb.py]

	Computes the DM relative velocity at CMB using eq. 28 from this
reference [https://arxiv.org/abs/1309.4091].

	Parameters

	
	mx (float) – Dark matter mass in MeV.

	x_kd (float) – T_kd / m_x, where T_kd is the dark matter’s kinetic decoupling
temperature.

	Returns

	v_x – The DM relative velocity at the time of CMB formation.

	Return type

	float

Particle physics quantities

Overview

In addition to providing functions for computing gamma-ray and CMB constraints,
the Theory class has methods for computing a variety of particle physics
quantities, which are documented on this page.

Methods

	
static Theory.list_annihilation_final_states()[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/theory.py]

	Lists annihilation final states.

Subclasses must implement this method.

	Returns

	fss – Possible annihilation final states.

	Return type

	list(str)

	
Theory.annihilation_cross_sections(e_cm)[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/theory.py]

	Computes annihilation cross sections.

	Parameters

	e_cm (float) – Center of mass energy for the annihilation in MeV.

	Returns

	sigmas – Annihilation cross section into each final state in
\(\mathrm{MeV}^{-2}\) as well as the total cross section.

	Return type

	dict(str, float)

	
Theory.annihilation_cross_sections(e_cm)[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/theory.py]

	Computes annihilation cross sections.

	Parameters

	e_cm (float) – Center of mass energy for the annihilation in MeV.

	Returns

	sigmas – Annihilation cross section into each final state in
\(\mathrm{MeV}^{-2}\) as well as the total cross section.

	Return type

	dict(str, float)

	
Theory.annihilation_branching_fractions(e_cm)[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/theory.py]

	Computes annihilation branching fractions.

	Parameters

	e_cm (float) – Center of mass energy for the annihilation in MeV.

	Returns

	bfs – Annihilation branching fractions into each final state.

	Return type

	dict(str, float)

	
Theory.partial_widths()[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/theory.py]

	Computes mediator decay widths.

Subclasses must implement this method.

	Returns

	widths – Mediator partial widths in MeV as the total cross decay width.

	Return type

	dict(str, float)

	
Theory.total_spectrum(e_gams, e_cm)[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/theory.py]

	Computes total continuum gamma-ray spectrum.

	Parameters

	
	e_gams (float or float numpy.array) – Photon energy or energies at which to compute the spectrum.

	e_cm (float) – Annihilation center of mass energy.

	Returns

	spec – Array containing the total annihilation gamma-ray spectrum.

	Return type

	float numpy.array

	
Theory.gamma_ray_lines(e_cm)[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/theory.py]

	Gets information about annihilation into gamma-ray lines.

Subclasses must implement this method.

	Parameters

	e_cm (float) – Annihilation center of mass energy.

	Returns

	lines – For each final state containing a monochromatic photon, gives the
energy of the photon and branching fraction into that final state.

	Return type

	dict(str, dict(str, float))

	
Theory.spectra(e_gams, e_cm)[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/theory.py]

	Gets the contributions to the continuum gamma-ray annihilation spectrum
for each final state.

	Parameters

	
	e_gams (float or float numpy.array) – Photon energy or energies at which to compute the spectrum.

	e_cm (float) – Center of mass energy for the annihilation in MeV.

	Returns

	specs – Contribution to \(dN/dE_\gamma\) at the given photon energies
and center-of-mass energy for each relevant final state. More
specifically, this is the spectrum for annihilation into each
channel rescaled by the corresponding branching fraction into that
channel.

	Return type

	dict(str, float)

	
Theory.spectrum_funcs()[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/theory.py]

	Gets a function computing the continuum gamma-ray spectrum for
annihilations into each relevant final state.

Subclasses must implement this method.

	Returns

	spec_fns – \(dN/dE_\gamma\) as a function of photon energies and the
annihilation center of mass energy for annihilation into each final
state that produces a continuum spectrum.

	Return type

	dict(str, (float or np.array, float) -> float)

	
Theory.total_conv_spectrum_fn(e_gam_min, e_gam_max, e_cm, energy_res, n_pts=1000)[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/theory.py]

	Computes the total gamma-ray spectrum convolved with an energy
resolution function.

	Parameters

	
	e_min (float) – Lower bound of energy range over which to perform convolution.

	e_max (float) – Upper bound of energy range over which to perform convolution.

	e_cm (float) – Center of mass energy for DM annihilation.

	energy_res (float -> float) – The detector’s energy resolution (Delta E / E) as a function of
photon energy in MeV.

	n_pts (float) – Number of points to use to create resulting interpolating function.
More points gives higher accuracy at the cost of computing time,
but is necessary if the continuum spectrum contains very sharp
features.

	Returns

	dnde_conv – An interpolator giving the DM annihilation spectrum smeared by the
energy resolution function. Using photon energies outside the range
[e_min, e_max] will produce a bounds_error.

	Return type

	InterpolatedUnivariateSpline

	
Theory.total_positron_spectrum(e_ps, e_cm)[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/theory.py]

	Computes the total positron ray spectrum.

	Parameters

	
	e_ps (float or float numpy.array) – Positron energy or energies at which to compute the spectrum.

	e_cm (float) – Annihilation center of mass energy.

	Returns

	spec – Array containing the total annihilation positron spectrum.

	Return type

	float numpy.array

	
Theory.positron_lines(e_cm)[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/theory.py]

	Gets information about annihilation into monochromatic positrons.

Subclasses must implement this method.

	Parameters

	e_cm (float) – Annihilation center of mass energy.

	Returns

	lines – For each final state containing a monochromatic positron, gives the
energy of the positron and branching fraction into that final
state.

	Return type

	dict(str, dict(str, float))

	
Theory.positron_spectra(e_ps, e_cm)[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/theory.py]

	Gets the contributions to the continuum positron annihilation spectrum
for each final state.

	Parameters

	
	e_ps (float or float numpy.array) – Positron energy or energies at which to compute the spectrum.

	e_cm (float) – Center of mass energy for the annihilation in MeV.

	Returns

	specs – Contribution to \(dN/dE_\gamma\) at the given positron energies
and center-of-mass energy for each relevant final state. More
specifically, this is the spectrum for annihilation into each
channel rescaled by the corresponding branching fraction into that
channel.

	Return type

	dict(str, float)

	
Theory.positron_spectrum_funcs()[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/theory.py]

	Gets a function computing the continuum positron spectrum for
annihilations into each relevant final state.

Subclasses must implement this method.

	Returns

	spec_fns – \(dN/dE_{e^+}\) as a function of positron energies and the
annihilation center of mass energy for annihilation into each final
state that produces a continuum spectrum.

	Return type

	dict(str, (float or np.array, float) -> float)

	
Theory.total_conv_positron_spectrum_fn(e_p_min, e_p_max, e_cm, energy_res, n_pts=1000)[source] [https://github.com/LoganAMorrison/Hazma/tree/master/hazma/theory.py]

	Computes the total positron spectrum convolved with an energy
resolution function.

	Parameters

	
	e_min (float) – Lower bound of energy range over which to perform convolution.

	e_max (float) – Upper bound of energy range over which to perform convolution.

	e_cm (float) – Center of mass energy for DM annihilation.

	energy_res (float -> float) – The detector’s energy resolution (Delta E / E) as a function of
positron energy in MeV.

	n_pts (float) – Number of points to use to create resulting interpolating function.
More points gives higher accuracy at the cost of computing time,
but is necessary if the continuum spectrum contains very sharp
features.

	Returns

	dnde_conv – An interpolator giving the DM annihilation spectrum smeared by the
energy resolution function. Using positron energies outside the
range [e_min, e_max] will produce a bounds_error.

	Return type

	InterpolatedUnivariateSpline

Gamma ray spectra

Overview

This page discusses how to compute the gamma-ray spectrum for a particular
particle physics process. Since computing gamma-ray spectra is a
model-dependent process, we include in hazma tools for computing gamma-ray
spectra from both FSR and the decay of final state-particles.

The gamma_ray module contains two
functions called gamma_ray_decay and gamma_ray_fsr. The
gamma_ray_decay function accepts a list of the final-state particles,
the center-of-mass energy, the gamma-ray energies to compute the spectrum
at and optionally the matrix element. Currently, the final-state particles
can be \(\pi^{0}\), \(\pi^{\pm}\), \(\mu^{\pm}\),
\(e^{\pm}\), \(K^{\pm}\), \(K_{L}\) and \(K_{S}\) where
\(K\) stands for kaon.

We caution that when including many final-state mesons, one needs to take
care to supply the properly unitarized matrix element. The gamma_ray_decay
functions works by first computing the energies distributions of all the
final-state particles and convolving the energy distributions with the decay
spectra of the final-state particles. The gamma_ray_decay function can be
used as follows:

>>> from hazma.gamma_ray_decay import gamma_ray_decay
>>> import numpy as np
specify the final-state particles
>>> particles = np.array(['muon', 'charged_kaon', 'long_kaon'])
choose the center of mass energy
>>> cme = 5000.
choose list of the gamma-ray energies to compute spectra at
>>> eng_gams = np.logspace(0., np.log10(cme), num=200, dtype=np.float64)
compute the gamma-ray spectra assuming a constant matrix element
>>> spec = gamma_ray_decay(particles, cme, eng_gams)

The gamma_ray_fsr function computes the gamma-ray spectrum from
\(X\to Y\gamma\), i.e.:

\[\dfrac{dN(X\to Y\gamma)}{dE_{\gamma}} = \dfrac{1}{\sigma(X\to Y)}\dfrac{d\sigma(X\to Y\gamma)}{dE_{\gamma}}\]

where \(X\) and \(Y\) are any particles excluding the photon. This
function takes in as input a list of the initial state particle masses
(either 1 or 2 particles), the final state particle masses, the
center-of-mass energy, a function for the tree-level matrix element
(for \(X\to Y\)) and a function for the radiative matrix element
(\(X\to Y\gamma\)). The functions for the matrix elements must take is
a single argument which is a list of the four-momenta for the final state
particles. As an example, we consider the process of two dark-matter
particles annihilating into charged pions,
\(\bar{\chi}\chi\to \pi^{+}\pi^{-}(\gamma)\) using the model from
Advanced Usage. In Advanced Usage, we gave the
analytic expressions for the gamma-ray spectra. The tree-level and
radiative matrix elements for this process are:

\[\begin{split}|\mathcal{M}(\bar{\chi}\chi\to \pi^{+}\pi^{-})|^2 &= \frac{c_1^2 \left(s-4 m_{\chi}^2\right)}{2 \Lambda^2}\\
|\mathcal{M}(\bar{\chi}\chi\to \pi^{+}\pi^{-}\gamma)|^2 &= \dfrac{2 c_1^2 \left(4 \mu_{\chi}^2-1\right) Q^2 e^2}{\Lambda^2 \left(t-\mu_{\pi}^2 Q^2\right)^2
\left(u-\mu_{\pi}^2 Q^2\right)^2}\\
&\qquad \times \left(\left(\mu_{\pi} Q (t+u)-2 \mu_{\pi}^3 Q^3\right)^2+s
\left(t-\mu_{\pi}^2 Q^2\right) \left(\mu_{\pi}^2
Q^2-u\right)\right)\end{split}\]

where \(Q\) is the center-of-mass energy, \(e\) is the
electromagnetic coupling, \(\mu_{\pi,\chi} = m_{\pi,\chi}/Q\) and

\[s = (p_{\pi,1} + p_{\pi,2})^2, t = (p_{\pi,1} + k)^2, u = (p_{\pi,2} + k)^2\]

with \(p_{\pi,1,2}\) are the four-momenta of the two final-state pions
and \(k\) is the four-momenta of the final-state photon. Below, we
create a class to implement functions for the tree and radiative matrix
elements. Note that these functions take in an array of four-momenta.

from hazma.field_theory_helper_functions.common_functions import \
minkowski_dot as MDot

class Msqrd(object):
 def __init__(self, mx, c1, lam):
 self.mx = mx # DM mass
 self.c1 = c1 # effective coupling of DM to charged pions
 self.lam = lam # cut off scale for effective theory

 def tree(self, momenta):
 ppi1 = momenta[0] # first charged pion four-momentum
 ppi2 = momenta[1] # second charged pion four-momentum
 Q = ppi1[0] + ppi2[0] # center-of-mass energy
 return -((self.c1**2 * (4 * self.mx**2-Q**2)) / (2 * self.lam**2))

 def radiative(self, momenta):
 ppi1 = momenta[0] # first charged pion four-momentum
 ppi2 = momenta[1] # second charged pion four-momentum
 k = momenta[2] # photon four-momentum
 Q = ppi1[0] + ppi2[0] + k[0] # center-of-mass energy

 mux = self.mx / Q
 mupi = mpi / Q

 s = MDot(ppi1 + ppi2, ppi1 + ppi2)
 t = MDot(ppi1 + k, ppi1 + k)
 u = MDot(ppi2 + k, ppi2 + k)

 return ((2*self.c1**2*(-1 + 4*mux**2)*Q**2*qe**2 *
 (s*(-(mupi**2*Q**2) + t)*(mupi**2*Q**2 - u) +
 (-2*mupi**3*Q**3 + mupi*Q*(t + u))**2)) /
 (self.lam**2*(-(mupi**2*Q**2) + t)**2*
 (-(mupi**2*Q**2) + u)**2))

Next, we can compute the gamma-ray spectrum for
\(\bar{\chi}\chi\to\pi^{+}\pi^{-}\gamma\) using:

>>> from hazma.gamma_ray import gamma_ray_fsr
specify the parameters of the model
>>> params = {'mx': 200.0, 'c1':1.0, 'lam':1e4}
create instance of our Msqrd class
>>> msqrds = Msqrd(**params)
specify the initial and final state masses
>>> isp_masses = np.array([msqrds.mx, msqrds.mx])
>>> fsp_masses = np.array([mpi, mpi, 0.0])
choose the center-of-mass energy
>>> cme = 4.0 * msqrds.mx
compute the gamma-ray spectrum
>>> spec = gamma_ray_fsr(isp_masses, fsp_masses, cme, msqrds.tree,
 msqrds.radiative, num_ps_pts=500000, num_bins=50)
plot the spectrum
>>> import matplotlib.pyplot as plt
>>> plt.figure(dpi=100)
>>> plt.plot(spec[0], spec[1])
>>> plt.yscale('log')
>>> plt.xscale('log')
>>> plt.ylabel(r'$dN/dE_{\gamma} \ (\mathrm{MeV}^{-1})$', fontsize=16)
>>> plt.xlabel(r'$E_{\gamma} \ (\mathrm{MeV})$', fontsize=16)

Functions

Positron spectra

Overview

In order to compute the limits on a given model from energy injections
into the CMB spectra, one needs to know the gamma-ray and electron/positron
spectra for the model. hazma contains a dedicated module,
positron_spectra, for computing the electron/positron spectra from
decays of \(\pi^{\pm}\) and \(\mu^{\pm}\). As in the decay
module, the positron_spectra module allows users to compute the
electron/positron spectra for arbitrary energies of the parent-particle.
The procedure for computing the spectra for arbitrary parent-particle
energies is identical to the procedure used for decay. In addition
to the decay spectra of muons and pions, hazma contains a function to
compute the electron/positron from a matrix element called positron_decay.

Functions

Decay spectra

Overview

The decay.py module contains high-performance functions for computing
the gamma-ray spectra from \(\pi^{\pm}\), math::pi^{0} and
\(\mu^{\pm}\) decays.

The functions in this module allow the user to compute the decay spectra
for arbitrary parent-particle energy. In order to obtain spectra for
arbitrary parent-particle energy, we compute the decay spectra in the
rest-frame of the parent-particle and perform a Lorentz boost, which
amounts to doing a change-of-variables along with a “convolution” integral.
To achieve higher computational performance, we perform all integrations
in c using cython and build extension modules to interface with
python.

Functions

RAMBO

Overview

In hazma, the rambo module can be used to perform various tasks. We
include a generic functions for generating phase-space points called
generate_phase_space_point and generate_phase_space, which will
compute a single or many phase-space points. The generate_phase_space
function additionally allows for the user to specify a matrix element.
We include a function called integrate_over_phase_space which will
perform the integral:

\[\int \left(\prod_{i=1}^{N}\dfrac{d^{3}\vec{p}_{i}}{(2\pi)^3}\dfrac{1}{2E_{i}}\right)(2\pi)^4\delta^{4}\left(P-\sum_{i=1}^{N}p_{i}\right)\left|\mathcal{M}\right|^2\]

where \(P^{\mu}\) is the total four-momentum, \(p_{i}^{\mu}\) are
the individual four-momenta for each of the \(N\) final-state particles
and \(\mathcal{M}\) is the matrix element. rambo.py also contains
functions for computing cross-sections (decay widths) for \(2\to N\)
(\(1\to N\)) processes called compute_annihilation_cross_section
(compute_decay_width). For example, if we would like to compute the
partial decay width of \(\mu\to e\nu\nu\), one could use the following.
First, we declare a function for the matrix element. The function for the
matrix element must take in a list of the four-momenta and return the matrix
element:

Import the fermi constant
from hazma.parameters import GF
Import a helper function for scalar products of four-vectors
from hazma.field_theory_helper_functions.common_functions import \
 minkowski_dot as MDot
Declare the matrix element
def msqrd_mu_to_enunu(momenta):
 pe = momenta[0] # electron four-momentum
 pve = momenta[1] # electron-neutrino four-momentum
 pvmu = momenta[2] # muon-neutrino four-momentum
 pmu = sum(momenta) # muon four-momentum
 # Return matrix element
 return 64. * GF**2 * MDot(pe, pvmu) * MDot(pmu, pve)

Then, the partial decay width can be computed using:

Import function to compute decay width
from hazma.rambo import compute_decay_width
import masses of muon and electron
from hazma.parameters import muon_mass as mmu
from hazma.parameters import electron_mass as me
Specify the masses of the electron and neutrinos
fsp_masses = np.array([me, 0., 0.])
compute the partial width
partial_width = compute_decay_width(fsp_masses, mmu, num_ps_pts=50000,
 mat_elem_sqrd=msqrd_mu_to_enunu)

Using 50000 phase-space points, we are able to within \(5\%\) of the
analytical result. In addition, rambo includes a function for
performing partial integrations over all variables except the energy of
one of the final-state particles called generate_energy_histogram.
This function returns a multi-dimensional array with the first index
labeling the final-state particles and zeroth component of the second
index given the energies and the 1 component of the second index giving
the probability that the final-state particle has the particular energy.
This function can be used via:

from hazma.rambo import generate_energy_histogram
import numpy as np
num_ps_pts = 100000 #number of phase-space points to use
masses of final-state particles
masses = np.array([100., 100., 0.0, 0.0])
cme = 1000. # center-of-mass energy
num_bins = 100 # number of energy bins to use
computing energy histograms
eng_hist = generate_energy_histogram(num_ps_pts, masses, cme,
 num_bins=num_bins)
plot the results
import matplotlib as plt
for i in range(len(masses)):
 # pts[i, 0] are the energies of particle i
 # pts[i, 1] are the probabilities
 plt.loglog(pts[i, 0], pts[i, 1])

Functions

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | L
 | P
 | S
 | T
 | U
 | V

_

 	
 	__init__() (hazma.flux_measurement.FluxMeasurement method)

A

 	
 	A_eff_comptel (in module hazma.gamma_ray_parameters)

 	A_eff_e_astrogam (in module hazma.gamma_ray_parameters)

 	A_eff_egret (in module hazma.gamma_ray_parameters)

 	
 	A_eff_fermi (in module hazma.gamma_ray_parameters)

 	annihilation_branching_fractions() (hazma.theory.Theory method)

 	annihilation_cross_sections() (hazma.theory.Theory method), [1]

B

 	
 	BackgroundModel (class in hazma.background_model)

 	
 	binned_limit() (hazma.theory.Theory method)

C

 	
 	cmb_limit() (hazma.theory.Theory method)

 	
 	comptel_diffuse (in module hazma.gamma_ray_parameters)

D

 	
 	dPhi_dEdOmega() (hazma.background_model.BackgroundModel method)

E

 	
 	e_highs (hazma.flux_measurement.FluxMeasurement attribute)

 	e_lows (hazma.flux_measurement.FluxMeasurement attribute)

 	egret_diffuse (in module hazma.gamma_ray_parameters)

 	energy_res (hazma.flux_measurement.FluxMeasurement attribute)

 	
 	energy_res_comptel() (in module hazma.gamma_ray_parameters)

 	energy_res_e_astrogam (in module hazma.gamma_ray_parameters)

 	energy_res_egret() (in module hazma.gamma_ray_parameters)

 	energy_res_fermi() (in module hazma.gamma_ray_parameters)

F

 	
 	f_eff() (hazma.theory.Theory method)

 	fermi_diffuse (in module hazma.gamma_ray_parameters)

 	
 	fluxes (hazma.flux_measurement.FluxMeasurement attribute)

 	FluxMeasurement (class in hazma.flux_measurement)

G

 	
 	gamma_ray_lines() (hazma.theory.Theory method)

L

 	
 	list_annihilation_final_states() (hazma.theory.Theory static method)

 	
 	lower_errors (hazma.flux_measurement.FluxMeasurement attribute)

P

 	
 	p_ann_planck_temp_pol (in module hazma.cmb)

 	p_ann_planck_temp_pol_lensing (in module hazma.cmb)

 	p_ann_planck_temp_pol_lensing_bao (in module hazma.cmb)

 	
 	partial_widths() (hazma.theory.Theory method)

 	positron_lines() (hazma.theory.Theory method)

 	positron_spectra() (hazma.theory.Theory method)

 	positron_spectrum_funcs() (hazma.theory.Theory method)

S

 	
 	solid_angle() (in module hazma.gamma_ray_parameters)

 	
 	spectra() (hazma.theory.Theory method)

 	spectrum_funcs() (hazma.theory.Theory method)

T

 	
 	target (hazma.flux_measurement.FluxMeasurement attribute)

 	TargetParams (class in hazma.gamma_ray_parameters)

 	total_conv_positron_spectrum_fn() (hazma.theory.Theory method)

 	
 	total_conv_spectrum_fn() (hazma.theory.Theory method)

 	total_positron_spectrum() (hazma.theory.Theory method)

 	total_spectrum() (hazma.theory.Theory method)

U

 	
 	unbinned_limit() (hazma.theory.Theory method)

 	
 	upper_errors (hazma.flux_measurement.FluxMeasurement attribute)

V

 	
 	vx_cmb() (in module hazma.cmb)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Hazma’s documentation!

 		
 Installation

 		
 Usage

 		
 Basic Usage

 		
 Using Simplified Models

 		
 Subclassing the Simplified Models

 		
 Advanced Usage

 		
 Adding New Gamma-Ray Experiments

 		
 User-Defined Models

 		
 Models

 		
 Overview

 		
 Scalar mediator

 		
 Vector mediator

 		
 Gamma ray limits

 		
 Overview

 		
 Limits from existing data

 		
 Discovery reach for upcoming detectors

 		
 Classes, functions and constants

 		
 CMB constraints

 		
 Overview

 		
 Computing CMB limits

 		
 Functions and constants

 		
 Particle physics quantities

 		
 Overview

 		
 Methods

 		
 Gamma ray spectra

 		
 Overview

 		
 Functions

 		
 Positron spectra

 		
 Overview

 		
 Functions

 		
 Decay spectra

 		
 Overview

 		
 Functions

 		
 RAMBO

 		
 Overview

 		
 Functions

_static/hazma_logo_large.png
&/ VA
/ "’s’o

_static/minus.png

_static/file.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/img/hazma_logo_large.png
&/ VA
/ "’s’o

